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Figure 7-17: Call Execution
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» Dispatch the call to the stub and free up resources no longer needed.

* Queue (but not transmit) any reject response that may have been generated by
the stub, and/or aresponse packet for acall that has no “out” arguments.

» Transmit the call’s out arguments when the stub returns.

» Clean up in various ways. This can include flushing any pending cancels, free-
ing the transmit queue, surrendering the call’s packet reservation, and setting
the call’s state to “idle.” Non-idempotent calls and idempotent calls with multi-
packet out arguments transition to the “final” state awaiting acknowledgment
from the client that al the outs have been received. Once this ack comesin,
they transition to the “idle” state.

Figure 7-17 attempts to diagram this process. Shaded areas in the figure indicate
the parts of the execution path where the call is unlocked during (what is expected
to be) along-running operation. There are several other placesin

rpc_ dg execute call wherethe cal gets momentarily unlocked so that the
global mutex can be acquired. At all such unlock/relock junctures, the call’s state
is examined upon reacquisition o thelock and, if it isn't recv, the routine jJumpsto
theEND OF CALL label on the assumption that some other process has acquired a
cal lock in the meantime.
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Table 7-3: rpc_dg_pkt_pool_elt_t structure

rpc_dg pkt pool elt t ({

*next /* next element on free list */

xge /* a structure consisting of an xge type
and a packet body type */

rge /* a structure consisting of an rge type
and a raw packet body type */

}

Call Execution

Once a packet has been added to an SCALL’s receive queue, it becomes “part of”
the call. The call itself will not be executed (that isto say, handed off to the server
stub) until all the packets for it have been received. All of the processing between
rpc_dg do_request and the actual handoff to the stub takes placein
rpc_ dg execute call, whichitself isbeing executed in acall thread (see
page 3-13). When itiscaled by thethread, rpc_ dg execute call increments
the SCALL'srefcnt field and initially locks the call. The executor thread holds
thisreference until the call is dispatched to the stub, but it must periodically release
and reacquire the call lock due to locking hierarchy requirements. Being handed
off to rpc_ dg execute call doesnot guarantee that the call will in fact be
executed. There are several potential failuresthat may crop up in the course of exe-
cuting this function, and much of the complexity in rpc_ dg execute callis
a conseguence of the need to handle these failures robustly.

We can summarize the workings of rpc_ dg execute call asfollows:

e Check to be surethecall is still inthereceive state. If it isn’'t, assume it was
cancelled and clean up.

» Makesurethe call has a packet reservation. This requires unlocking the call
lock, acquiring the global lock, then reacquiring the call lock.

* Prod awaiting client into sending new data if the call is ableto get areserva
tion

» Enable receipt of async cancels. The call thread running
rpc__dg execute call wasinvoked with async cancellability disabled.

» Create aserver binding handleif necessary.

* Cdlrpc dg call receive_ int toretrievethefirst packet from the
receive queue

» Retrieve/update the call’s auth info as necessary.
* Verify that the call’s interface and type are supported on the local machine.

» If thecall isnon-idempotent, verify that the server’sideaof the call’s sequence
number is the same as the client’s by invoking the conversation manager’s
WAY callback if necessary. The call isunlocked during this operation.

Copyright © 1993 Open Software Foundation




Revised 4/25/95

ond).

Datagram Protocol Service, part |1

rpc_ dg pkt pool fork handler
Thisfunction frees up packets on the freelist and cleans up the pool
in the postfork child.

Table 7-2: rpc_dg_pkt_pool_t structure

rpc_dg pkt pool t

pkt mutex

/* the mutex that protects this struc-
ture */

max pkt count

/* initial number of packets in the pool
(10000) */

pkt count /* number of packets remaining in the
pool */
reservations /* number of “ordinary” reservation cur-

rently held */

srv_resv_avail

/* number of server reservations avail-
able */

active rqges

/* number of rge’s allocated to active
calls */

active xges

/* number of xges allocated to active
calls */

failed alloc_rge

/* number of receivers blocked awaiting
allocation of an rge (should always be 0,
since alloc rge should never fail) */

blocked alloc_xge

/* number of senders blocked awaiting
allocation of an xge */

free count

/* number of elements on the free list */

free list

/* pointer to the head of a linked list
of free pool elements */

pkt waiters head

/* pointer to the head of the list of
call handles to signal when a packet
becomes available */

pkt waiters tail

/* and the tail pointer */

rsv_waiters head

/* pointer to the head of a list of call
handles to signal when a reservation
becomes available */

rsv_waiters tail

/* and the tail pointer */

}
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Client Side Rationing Concerns

Clients who are also senders (the typical case) cannot drain their transmit queues
until they have made contact with a server. In situations where the client stubs are
generating large outs and no server is available, or (more likely) in akernel envi-
ronment, it's possible for a group of intercommunicating processes to expend all
available reservations on data awaiting transmission, leaving them no way to start
any server threads. To avoid this, a quantity of reservations are dedicated to server-
thread startup needs by being “pre-reserved” for use by calls coming in over server
sockets.

A clients does not actually try to get areservation until after it has established its
call handle and registered its timer routine, since rationing-induced call blockage
has to be handled using the call’s normal retransmission and timeout strategies.

Major Packet Rationing Data Structures and Internal Operations

The global data structureillustrated in Table 7-2 is defined in dgpkt . h and used
to manage the pool of packets available to the datagram RPC runtime. Individual
pool elements (Table 7-3) are defined as a union of two structs, each of which rep-
resents a packet destined for use by a sender or areceiver.

These data structures, along with the call handles of the callsinvolved in rationing
(waiting for a packet or areservation) are operated on by asmall collection of
internal routines:

rpc_ dg pkt make reservation
Depending on the value of this call’s “block” argument, it will
either loop until it can make areservation (blocking mode) or return
without one. Senders call thisroutinein rpc. dg call start.
Receiverscall it twice (as described in the previous section), first in
nonblocking modein do request, then in blocking modein
rpc_dg execute call.

rpc_ dg pkt alloc rge, rpc_ dg pkt alloc_xge
These routines allocate the rge or xge needed to actually receive
or send a packet. A call may block waiting for an xge, but should
never block waiting for an rqe, sincethese areall initially allocated
to the listener thread, which never actually queues anything itself.
The actual rge alocation isrequested in the function
rpc__dg network select dispatch, whilexge alocationis
requestedinrpc_ dg call transmit int.

rpc_dg pkt free rqge, rpc dg pkt free xge
These aretheinverse of the“aloc” routines above. These functions
also signal any calls that may be waiting for a queue element to
become available.

rpc_ dg pkt cancel reservation
Thisfunction, typically invoked by rpc. dg call end cancelsa
call’s reservation, which in turn may take the system out of ration-
ing mode. If that happens, this function also signals any calls that
are waiting on the availability of reservations (first) or packets (sec-
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Server Side Rationing Concerns

On the server side of the runtime, it is especially important that new calls be
allowed to get started, even in times of stress. Thistranglates, in the rationing
implementation, to an emphasis on getting running calls to drain their receive
queues, thereby freeing packets.

Figure 7-16: Server Sde Packet Rationing
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Asillustrated in Figure 7-16, rpc__ dg_call recvqg insert hasthelast
chance at acquiring areservation. If it can do so, it takes the additional precaution
of making sure the packet is “really needed at thistime,” acondition that is satis-
fied only if the packet is the first packet in the queue or will become the first in-
order packet. All other conditions result in the packet being dropped and the client
being forced into retransmission. This strategy keeps queue sizes down (and pack-
ets more available) without—it is hoped—significantly slowing call progress.

Note that on the server side of a system that isrationing, aqueued call cannot get a
reservation. Such calls will appear to be set up, but will have no queued data. All
requests that are part of such acall will be dropped, though their senders will
receive (if they asked for one) afack of fragment number -1 that also indicates a
receive window size of zero.
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ronments, and much of the motivation for the DCE 1.0.x RPC packet rationing
implementation arose after consideration of the needs of the DCE DFS.

Packet rationing is applicable to both the client (sender) and server (receiver) sides
of an RPC. In this section, we will concentrate on the implementation (and impli-
cations) of packet rationing for receivers.

The fundamental premises of packet rationing are simple:

The runtime establishes a packet pool consisting of aquantity of packets based
on the expected number of active client and server threads that will need to run
concurrently. At aminimum, this pool must contain (1+2s+2C) packets,
where s represents the maximum number of call executor (server) threads and
C represents the maximum number of concurrent client calls that the system
will be able to support. (The additional packet is for the listener thread.)

Every call must be able to reserve at |east one packet from the packet pool
before it can begin execution. If the system is rationing, any call that does not
have areservation (as indicated by the state of the common datagram call han-
dleshas pkt reservation flag) won't be allowed to queue data to its
transmit or receive queues. This enforces enough fairness to prevent packet-
hungry clients or servers from starving those with more modest packet appe-
tites.

Clientshaveto acquire areservationintherpc_ dg call start routine. If
they cannot, the call will block. Serversinitially try to acquire their reservation
inrpc_ dg do_ request. If thisfails (it cannot be allowed to block, sinceit
runsin thelistener thread), a second attempt is made after the call is handed off
to the executor thread. If the second attempt fails, the call is*backed out” and
the request effectively dropped, forcing the client to retransmit.

A system begins rationing when:

* the number of packetsin the pool islessthan or equal to the num-
ber of reservations

» acall has blocked awaiting a reservation

A conversation callback does not need to acquire areservation. It inherits the
reservation made by the call that induced it.

As an optimization, the actual packet rationing code allocates two packets for
every “reservation,” based on the following observations:

Receivers hand off packets to stubs without knowing when they will be freed.
Having an extra packet reserved makes it unnecessary for the receiver to take
this uncertainty into account.

A receiver (server) may need to both queue a packet and do a WAY callback in
order to ensure that the call will progress. Since no packets are delivered to the
stubs until after any required WAY succeeds, having two reserved packets
allows both operations to happen.
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* Handling convc requests, as described on page 7-20.
» Associating the packet with a server call handle (SCALL) structure.

» Setting up the executor thread that will, if all goes well. execute the call, and,
in the process, dealing with any complications that may be induced by packet
rationing.

Aswe' vedescribed, rpc. dg do request calsdo request common to per-
form the initia filtering of the packet. Figure 7-3 illustrates the operations of
do_request common. Depending on the outcome of do_request common,
rpc__dg do_request Will do one of the following:

* respond to aclient ping

» transmit an error response if the packet was deemed to be part of an attempted
re-run of an idempotent call

» setup anew Server Connection Table Entry (SCTE) if the packet is part of a
new call

» add the packet to the receive queue for the current call.
» prod the application thread to run the call if it is a callback

Two-part forwarded packets (see page 7-17) are handled at this stage aswell, since
each part can be filtered through do request common and end up at the “same
place.”

If thevalueof thescall->call is setup field indicates that the call does not
yet have an executor thread, rpc. dg do_request creates one through acall to
rpc_ cthread invoke null, passing it the name of the internal

rpc_ dg execute call function asthe routine the thread should run. Thisrou-
tine will either succeed in making a packet reservation, in which case the call will
be able to proceed toward execution, or it won't, in which case the entire call must
be“backed out” viaacall torpc dg sct backout new call,afunctionthat
simply decrementsthe SCTE'shigh seg member. When this happens, the serv-
er’s behavior is seen by the client as identical to what it would have been had the
packet been dropped or lost in transmission so the client should eventually retrans-
mit and, with luck, be able to secure areservation.

We describe packet rationing in more detail in the next section.
Packet Rationing

The datagram RPC protocol service implements a packet rationing scheme
intended to guarantee that, regardless of the number of packets available in the
host system’s packet buffer space, acall will aways be able to obtain the packetsit
needs to make progress. In this context, we define progress as the ability of aclient
and server to exchange at least one packet at atime (i.e., to never block because no
packets can be acquired for transmit or receive queues). The need for this feature
was based on the observation that, in other RPC protocols, call progress can be
slowed or effectively halted when either side of a connection is consuming large
guantities of packets. Packets can be a scarce resource, especialy in kernel envi-
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rpc__dg handle convc. A recipient of an indy request simply updates the
associated client rep’'s 1ast_update field with the current rpc_clock t times
tamp. Figure 7-15 illustrates this process.

Figure 7-15: Client Liveness Maintenance
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Server-Side Listener Operations

Aswe' ve noted, operations that are run by the network listener thread can conve-
niently be divided into server- and client-oriented types. While any process can be
either aserver or aclient (and, when callbacks come into play, both), we think of
server-side routines as the ones that handle request and ping packets. Except where
otherwise noted, all of the functions we describe in this section are scoped internal.

Request Handling

Most of the basic request handling functions are implemented in the file
dgslsn.c. Request packets are dispatched to the internal routine
rpc__dg_do_request Which, along with its associated functions

do cbk request and do request common, cOMprisesthe heart of request
handling in the datagram RPC runtime.

Work accomplished in rpc_ dg_do_request can be summarized as:

» Separation of requests that are part of acall from those that are part of a call-
back. Requests that arrive on a client socket are assumed to be part of a call-
back and are dispatched to do cbk request.
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The Server-Side Client Representation

The server side of the datagram RPC runtime associates each client with a*“ client
rep” data structure defined in dg . h and illustrated here in Table 7-1.

Table 7-1: rpc_dg_client_rep t structure

rpc_dg client rep t {

*next /* next element in chain */
cas_uuid /* client address space UUID */
rundown /* pointer to context rundown routine to

call if client dies */

last update /* rpc clock t when we last heard from the
client */

refcnt /* references held to this element */

}

This structure provides away for a server to associate multiple connections (activ-
ities) with a single remote object, to know how long it has been since that object
last transacted any business with the server, and to know what to do onceit has
been determined that the remote object no longer exists. When context handles are
in use, a server associates a client rep structure with one or more SCTES proceed-
ing roughly asfollows:

» acdlinvokestherpc dg binding ing client Operation to associate a
client rep the call’s SCTE. If such an association exists, the existing client rep
gets another reference.

» if noclient rep exists, the server makes a WAY 2 callback and initializes a new
client rep with thereturned cas_uuid, aNULL rundown entry, and
last update=0.

» if the server stub wants to monitor client liveness, it calls
rpc_dg network mon, Supplying a rundown function pointer. The client
rep’s rundown entry is pointed at the rundown function, and the 1ast_up-
date field istimestamped.

The convc indy Operation

Clients that are using context handles periodically send an “1’m not dead yet”
(“indy”) request to the server(s) with which they are communicating. The indy
request is the sole operation in the conve_v1_ o interface, which, like the conv
interface, isimplemented in pseudo-stub forminthe file dgclive. c. Clients
maintain a queue of server bindings to which conve requests should be sent. The
“indy thread” traverses the queue periodically (in DCE 1.0.2, every 20 seconds)
and transmitsa convc request to each server represented there. The conve
reguest contains only the client’s cas uuid.

Like conv requests, incoming convc requests are handled by the network listener
thread, which dispatches them immediately to the server routine
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Figure 7-14: The Conversation Manager
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In DCE 1.0.2, only conv_who_are you_auth and conversation ping requests
(that isto say, packets of the ping typethat include the conv_v3 o interface
UUID) are queued on the convqg. Conversations generate their own ping traffic,
just like any other idempotent RPC.

Context Handle Support

Servers can, if requested, maintain context on a client’s behalf. This context must
be maintained across all calls made from aclient, and should be freed as soon as
the client no longer needsiit. Thistask is complicated somewhat by the fact that
servers, which normally “see” clients as a series of otherwise unrelated calls, need
away to associate all calls originating from one local client address space with
some remote object. The datagram RPC protocol service enablesthis by providing
clients with the notion of an address space UUID with which they (and their con-
text) can be associated in a server’s address space, and by providing asimple
means for aclient to periodically reassure the server “I’m not dead yet.”

7-22 Copyright © 1993 Open Software Foundation



Revised 4/25/95 Datagram Protocol Service, part |1

DCE RPC implements the WAY callback type only because it
needs to support earlier (NCS RPC) clients. If it did not need to
make this concession to backward compatibility, all WAY callbacks
would also request the cas_uuid.

conv_who are you auth
Servers call this operation (WAY-AUTH) whenever a new connec-
tion (new activity/sequence) is set up for a call that requires some
form of authentication or authorization.

conv_are_you_there
This operation (AYT) isintended to provide support for a server-
side “ping” analogue, but is not really used in DCE 1.0.2. It may
turn out to be unnecessary, since today, a client that has not trans-
mitted all of itsins and has never pinged the server can be safely
presumed dead.

Currently, all conv operations other than WAY-AUTH are handled viathe “fast
path,” on which the requests, represented as free receive queue elements, are ssm-
ply handed off to rpc dg handle conv_ int, Whichisresponsible for build-
ing and transmitting the appropriate response packet. WAY-AUTH requests, which
involve a potentially time-consuming RPC to the DCE Security Service, are
gueued for handling by the conversation manager thread.

The conversation manager’s queue (convq) isasimple structure defined in
dglsn.c, with head and tail pointers aswell asits own mutex and condition vari-
able. This queue holds some (small, since it is limited to the number of simulta-
neous in-progress client calls) number of receive queue elements (see page 6-23).
These elements are indexed by the callback’s activity UUID. A conv callback is
itsown activity, and conv packets carry this activity UUID in the packet header.
The “parent” activity UUID isincluded in the conv packet body.

When the first WAY-AUTH request arrives, the runtime initializes the conversa
tion manager’s queue and starts up the conversation thread. This thread executes
the convg_ 1oop routine, which traverses the queue each time an element is added
(signalled by the change in the queue's condition variable) and runs the

handle conv_int routine sequentially on each queue element. Figure 7-14
illustrates the operations of the conversation manager.
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» aclient conversation (convc) operation that clientsinvoke to let servers know
that they are still alive, even though they may not have been heard from with
any “real work” inawhile

* asaver-sideclient rep datastructure that identifies aclient by means of a
special UUID that, once established, is associated with every call made from
that client’s local address space.

The latter two facilities are part of context handle support, and only come into use
when context handles are specified in an interface definition. The conversation
manager becomes part of every non-idempotent RPC.

The Conver sation M anager

7-20

Datagram RPC client/server connections generate their own “conversationa” traf-
fic unrelated to the content of calls made over them. These conversations concern:

» Client and/or server identity verification, in which clients and serverstry to
identify each other by various means (and with varying levels of certainty)

* Livenesstests, in which one party attempts to ascertain whether the other party
is dead or unreachable (both of which amount to the same thing for an RPC).

Any such conversation requires clients and servers to temporarily reverse roles,
and isin effect a callback mechanism. Rather than try to implement conversational
callbacks as part of the normal datagram RPC callback mechanism, the datagram
RPC protocol service provides asimplified, specialized, lightweight facility
known internally as the conversation manager to handle these interactions.

The conversation manager comprises a set of routines defined in dglsn.c and
conv . c. Theroutines are a combination of packet processing operations and
pseudo-stubs that implement the conversation manager’s “ manager routines.”
There is also a conversation thread and a conversation queue that support poten-
tially-long-running conversations that would otherwise block runtime progress.

For the most part, the manager routines ssmply unmarshal the request packets
(which are fairly uncomplicated) in place and, for local operations (the kind we
will discuss here), construct and transmit the appropriate response. There are four
operations in the conv interface:

conv_who_are you
When a server receives a non-idempotent request packet that con-
tains a new activity/sequence pair, it sendsa conv_who_are_you
reguest (commonly referred to asa WAY callback), to the client to
ask for the client’s current sequence number.

conv_who_are you2

This operation (WAY 2) issimilar to aWAY callback, but also
returns to the caller with a Client Address Space UUID
(cas_uuid), used as part of the runtime’s support for context han-
dles. When a server receives a non-idempotent request packet that
contains a new activity/sequence pair and an indication that a con-
text handle isto be used, it sends a WAY 2 request to the client to
ask for the client’s current sequence number and cas_uuid.
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transformation similar to the one previously described for one-part forwards; the
sender’s address retrieved from the body of the first half replacesthe addressin the
header of the second half, and the packet is now ready to be associated with an
scall or ccall. (The “forwarded” flags are never set on the second half of atwo-part
forward.)

Figure 7-13: Processing a Forwarded Packet
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The Packet Forwarding Function

The £wd_map forwarding function invokes the rpcd’s epdb_fwd routine, which
searches the endpoint database on the local host for in interface and/or object
UUID match as described on page 5-18. Even though £wd_map is defined and car-
ried out as aremote operation, it is always an intramachine operation in DCE
1.0.2.

L iveness, Context, and Conversation Callbacks

Part of the work of connection maintenance involves making sure that clients and
servers can identify each other in ways that allow enforcement of call semantics
(e.g., at-most-once), detection of a*“death” at either end of the connection, and
maintenance of client context (context handles) in the server’s address space. To
these ends, the datagram RPC protocol service provides three closely related facil-
ities:
* aconversation manager (conv) that implements several simplified callback
operations that clients and servers use to establish various details of each oth-
ers identities.
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Figure 7-12: Forwarding a Packet
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Packets with inadequate subheader room must be forwarded in two pieces, thefirst
of which isacopy of the original header, with the “forwarded in two pieces’ flag
set and a body consisting only of the subheader, the second isjust the original
packet with neither of the “forwarded” flags set.

Processing a Forwar ded Packet

7-18

Operations on one-part forwarded packets are handled in

rpc__dg network select dispatchviatherecv pkt routine. Receiving
them is a simple matter of reversing the body manipulations performed in
forward fwd. The packet header’s address and data rep are replaced with the
ones in the subheader, the “forwarded” flag is cleared, then the subheader is
removed and the body restored to its original condition, making the packet appear
to have never been forwarded. Figure 7-13 illustrates this case.

Two-part forwards have to be handled in an environment that allows the two parts
to be kept on hand until they can be reconstituted as originally sent. The earliest
place this can happen in the packet processing machinery isin

rpc__dg do_request. (Two-part forwards are always requests.) When this rou-
tine sees a packet with the “forwarded in two parts’ flag set, it keeps the rge on-
hand, asitsscall->fwd2_rge, until the second half of the request—whichis
identified as such by virtue of having the same serial number and activity UUID as
the first half of the request—comesin, at which point the second half undergoes a

Copyright © 1993 Open Software Foundation



Revised 4/25/95 Datagram Protocol Service, part |1

incorrectly asfar asthe DCE RPC runtime is concerned. This condition must
be detected and corrected before any other packet processing is done.

Forwarding a Packet

Aswe' ve described, received packet processing in the listener thread routine
recv_dispatch checksto see whether the object and interface UUIDs carried in
a packet’s header reference an interface and/or interface/object pair registered on
thelocal host. If so, the packet isdispatched to rpc_ dg_fwd_pkt which invokes
theremote rpc_g_fwd_£n operation to determine the packet’s fate. This opera-
tionisdefined in comfwd . h and implemented in rpcd. c. Theruntimecallsit asa
remote operation viaa procedure pointer in rpc_ dg_fwd_pkt. It returns one of
three possible packet dispositions:

» drop the packet with no notification to the sender, it cannot be forwarded.

» drop the packet and deliver areject message to the original sender (unlessthe
packet is a broadcast RPC) This return code should never happen in DCE
1.0.2.

» forward the packet to the address supplied by the function

If the packet is to be forwarded, it isfirst transformed into a forwarded packet.
Thisinvolves hijacking the first 16 bytes of the packet’s body and inserting a spe-
cia “subheader” there (see page 6-11 for an illustration) that includes:

» afour-byte representation of the packet’s original body length (beforeinsertion
of the subheader)

* an eight-byte representation of the original sender’s address
» afour-byte representation of the original sender’s data representation

This, along with setting the “forwarded” flag in the packet header is al the packet
manipulation that’s necessary when the packet’s original length is at least 16 bytes
less than the maximum packet length. Figure 7-12 describes this process for the
casewhere rpc_ dg fwd pkt returns fwd forward. (Inthe aternative case,
the rqge issimply freed.)

Copyright © 1993 Open Software Foundation 7-17



Datagram Protocol Service, part Il Revised 4/25/95

which packets have been received (we discuss the theory behind datagram RPC
flow control beginning on page 6-11). Fack processing includes:

» classifying thefacksinto client-to-server or server-to-client types, based on the
type of socket on which they arrive.

» further classifying facks arriving on client sockets into acknowledgments of in
arguments (the common case) and acknowledgment of out arguments that are
part of a callback.

» associating the fack with accall or scall (and making sure to ignore facks for
callsthat are in the orphan state)

» processing thefack body’swindow size, serial num, and selective ack
information and making appropriate blast size and retransmit queue adjust-
ments.

Because of their “bidirectional” nature, boot time validation and processing for
fack packets depends on the type of socket on which the fack arrived. Facks that
are deemed to be a“response” by virtue of having arrived on aclient socket and
not having an activity UUID that can be found in the SCALLT are run through the
client-oriented routine rpc__ dg_do _common_response, Which verifies hat the
server boot time in the packet is correct. “Request” facks are processed through
rpc_dg server chk and set sboot.

All fack packets with alength greater than 12 bytes are assumed to contain selec-
tive ack information. This slight overloading of the packet header’s 1en field
allows compatibility with earlier (NCS) versions of DCE RPC by making it possi-
ble to discriminate between old and new fack packets without requiring an explicit
protocol version number change.

Forwarding

7-16

Another set of top-level packet processing routines that deserves at least alittle
illumination here are those that deal with packet forwarding. In DCE 1.0.2, packet
forwarding is handled by the rpcd, which we describe in Chapter 5. Even though
the forwarding process involves retransmission of the forwarded packet(s), for-
warding is always an intramachine operation, since the forwarder and the recipient
are required to be on the same host.

Packet forwarding introduces several problems for the runtime:

» Packets that need to be forwarded must be detected more or |less upon receipt,
transformed as necessary into forwarded packets, and dispatched to the packet
forwarding function.

» The packet forwarding function must be able to figure out where the packet
should go.

» Forwarded packets must be recomposed into “ordinary” packets upon receipt.

» None of the packet transformation must affect the authentication checksum in
the original packet (i.e., no byte-reordering may take place).

» Packetsoriginating in the NCS RPC world may havetheir “forwarded” flag set
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Figure 7-11: Listener Thread Routines
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Oncetheinitial decisions have been made about the disposition of a packet, the
processing can be divided into client- and server-specific routines, the bulk of
which arein dgclsn.c and dgslsn.c, respectively. Fack packets, which are
most commonly sent from servers to clients but can also go the other way, are han-
dled by routinesin dglsn. c, asare packets that carry the conversation manager’s
interface id. We describe the conversation manager and its relations on page 7-20.
We' I discuss fack handling in the next section.

Fack Handling

Fragment acknowledgment is an integral part of both connection liveness monitor-
ing and flow control. Receipt of any fack is a positive indication of the liveness of
the connection, and, in the case of multi-fragment calls, also letsthe receiver know
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Top-L evel Packet Dispatching

Most of the routines that deal with received packets at the top level are imple-
mented inthefilesdglsn.c and dglsn.h. The “executive summary” of what
happens at this level would go—in the errorless case—roughly like this:

» Allocate areceive queue element (rge) to hold the packet’s contents.
» Receive the packet and stuff it into the rge

» Filter the packet based on knowing what type of packet it is, what kind of
socket (client or server) the packet arrived on, and by examining packet’s
header flags and interface/object UUIDs. Common outcomes of this process
include:

« forward the packet if itsinterface and object UUIDs do not match
those of alocally-registered interface

» dispatch packets for specialized manager interfaces (e.g., conver-
sation manager)

* |look up the call handle with which the packet is associated
* deal with other packet types (e.g., ping, working, fack, ...)

* detect callbacks by looking at packet type and the type of socket
on which the packet arrives. For example, when a packet typein the
client-to-server family (request, ping, ...) arrives on aclient socket,
it indicates that a callback isin progress.

Figure 7-11 isasimplified illustration of listener thread packet processing at the
toplevel in rpc. dg network select dispatch and recv dispatch. At
the conclusion of this process, any packet not destined for forwarding or for “spe-
cial handling” by the conversation manager has been handed off to a per-type
“do_" routine. In addition, all packets other than facks or requests have been asso-
ciated with a ccall or an scall, callbacks have been detected and the proper refer-
ence count adjustments made, and the ccall/scall’s1ast recv timestamp and
awaiting ack fields have been updated.
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Figure 7-10: Reects, Faults, Cancels, and Orphans
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Packet Processingin thelListener Thread

All packets received by the network listener thread (see page 3-21) are handed off
to a“receive’ routine in the network epv. In the case of the datagram RPC protocol
service, thisroutineisrpc_ dg network select dispatch, which consti-
tutes the beginning of the datagram protocol service's packet processing logic.

We refer to this as “ packet processing” because so much of what goes on involves
examining a packet’s header (and, in some cases, body), then making some deci-
sion regarding the appropriate response as well as the correct disposition of the
packet’s data.

Routines that run in the network listener thread (i.e., routines that are called,
directly or indirectly, by rpc_ dg network select dispatch) can be cate-
gorized as:

* baseroutinesthat “see” all datagram RPC packets received.
» client routines to which packets received on client sockets are directed
» server routines to which packets received on server sockets are directed

There are further sub-specialities within these categories, which we will deal with
later on.
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Figure 7-9: Multi-Packet Calls
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Extraordinary Conditions (Rejects, Faults, Cancels, Orphans)

7-12

Cdlscan fail for several reasons:

* Protocol errors (e.g., attempts to re-run a non-idempotent call, clients picking
up abad binding, ...) cause acall to be rejected by the server.

» Asynchronous cancelsin the client (e.g., *C) must cause the server to take
some appropriate action.

» Organic errors in manager routines may cause synchronous faults during exe-
cution, which should be propagated back to the client.

Figure 7-10 summarizes various extraordinary conditions in terms of the packet
traffic they generate.
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Figure7-8: A“ Sow” Call (Idempotent)
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Multi-Fragment Calls

Any call that is not broadcast or maybe may have more in or out arguments than
will fit into asingle packet. Such cases typically involve the flow-control logic
described on page 6-11 to deliver the out packets in one or more blasts of (one
hopes) increasing size. The server only send one acknowledgment per blast. When

the last packet is received, the ins are delivered to the stub for execution. Figure 7-
9illustrates a simple case.
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Figure 7-7: A Non-ldempotent Call
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“Sow” Calls

A call that does not return in some predetermined interval is subject to invocation
of client ping and (possibly) retransmission logic. In the normal case, the call’s
timer routine beginsto ping if the call has not returned after two seconds. This ping
interval increases until either the call returns or the call’s timeout time is reached.

The pings are handled within the conversation manager, asillustrated in Figure 7-
8. Retransmission, if required, is handled through the normal call execution path.
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attempted re-runs, so servers and clients do not need to validate each other’s iden-
tity before allowing a call to proceed on a connection. They only need to be able to
carry on aconversation about call progress.

Figure 7-6: An Idempotent Call
CLIENT SERVER
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Non-Idempotent Calls

Non-idempotent calls; that isto say, calls that must execute at most once, require
somewhat more complicated client/server interaction than other types, and other-
wise complicate packet processing and call execution logic. Before executing such
cals, serversand clients verify each other’sidentity by invoking one of the simpli-
fied callbacks described on page 7-20. Non-idempotent calls generate at |east one
such callback for every new activity (which iswhy activity UUID reuse is agood
idea). Non-idempotent calls require the server to make sure that the client believes
the call iscomplete (i.e., to acknowledge receipt of al the call’s out arguments)
before modifying any internal call state (e.g., freeing outs). Figure 7-7 describes a
simple case of a non-idempotent call.
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Clients making broadcast calls must also be able to cope with the likelihood that
they will receive multiple responses to the request. The first oneto return is used.
Any others are discarded. Broadcast calls never return afault or reject packet,
since, with many servers executing a call, the knowledge that one of them encoun-
tered trouble of some sort is probably not too useful to the client, and could be con-
fusing. Since there can be no response beyond a single packet and since we assume
that there is a high probability that someone out there will execute the call and
return any outs, broadcast calls time out quickly, after three rpc clock ticks. Broad-
cast calls do not ping. Figure 7-5 illustrates a broadcast RPC.

Figure 7-5: A Broadcast Call
CLIENT SERVERS
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Like maybe calls, broadcast calls are tagged idempotent and are required to fit into
asingle packet. They may aso be defined, in the interface definition, as broadcast
maybe calls, in which case they are constrained to have no out arguments.

Idempotent Calls

|dempotent calls (Figure 7-6) that do not carry either a broadcast or a maybe
attribute may consist of multiple fragments. When they do, flow control and con-
nection management come into play, meaning that clients, after sending the initial
blast of packets, invoke atimer routine that periodically checksto seeif aresponse
has been received and, if not, begins to generate ping requests attempting to find
out how things are progressing at the server end of the connection. Since at-most-
semantics do not need to be enforced, servers do not need to detect and prevent
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It's probably fair to say that most of the complexity in the datagram RPC protocol
service's call semantic enforcement logic is dedicated to implementing at-most-
once semantics. The less rigorous requirements of maybe, broadcast, and idempo-
tent calls make their handling comparatively simple. However, sensible and effi-
cient handling of callbacks and cancels, not all of which is codified in the AES,
accounts for agood deal of the code content in the datagram RPC protocol service.

In preparation for our discussion of client and server-side call processing, we plan
to spend afew pages here detailing the paths that various combinations of packet
type and call semantic follow through the code on the client and server sides of an
RPC.

Maybe Calls

Calls with maybe semantics behave essentially like raw datagrams do. The entire
call isrequired to fit within asingle fragment, so the client stub ssmply sets up the
cal (rpc__dg call start),thensendsit (rpc_ dg call transceive).
Servers execute maybe calls as they would any idempotent call. Figure 7-4 illus-
trates a maybe call.

Figure 7-4. A Maybe Call
CLIENT SERVER

rpc__dg_call_start()

rpc__dg_call_transmit() ptype=request

rpc__dg_call_end() 235100102031
flags |= idempotent || maybel-.— rpc__dg_do_request()
serial=0000 rpc__dg_execute_call()

Incoming maybe packets are subjected to a server boot time check. If thetest fails,
the packets are smply dropped. Maybe calls that fail or fault generate the appro-
priate type of response to the caller.

Broadcast Calls

Rather than being sent to a specific endpoint, broadcast RPCs are sent to a net-
work’s broadcast address. Any server that exports the call’s interface will receive
and get achance to execute the call, so the concept of bound server instance
ismeaninglessin abroadcast context. On the client side, broadcast callsforego the
usual binding serialization (intended to make sure that calls using a given binding
handle will be transmitted to the same server instance) and are also forced to wait
for transmission until there are no other callsin progress, since broadcast cals are
always transmitted with a partial binding that would effectively unbind any bound
server instance associated with an in-progress call.
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Call Types

In this section, we describe how the datagram RPC protocol service implements
the call semantics defined by the “Operation Attributes’ listed in Chapter 4 of the
AES. From the protocol service's point of view, these attributes require varying
degrees of client/server (sender/receiver) interaction:

maybe

broadcast

idempotent

at-most-once

essentially araw datagram, which the sender transmits and forgets
about. No form of response isrequired (or even allowed), so there
isessentially no client/server interaction at all. Maybe callsare also
idempotent (thisisimplicit in the attribute, but made explicit in the
packet header flags.) The maybe and broadcast attributes may be
combined.

calls with the broadcast attribute may generate output, but never
require any other form of acknowledgment. A broadcast datagram
RPC with out arguments completes when any of the recipients
responds. Broadcast calls are also idempotent (thisisimplicit in the
attribute, but made explicit in the packet header flags.) The broad-
cast and maybe attributes may be combined.

calls with the idempotent attribute may consist of any number of
packets (fragments), and may be re-run any number of times with
the same result. Clients making idempotent callstypically query
servers when the call does not appear to be making adequate
progress. Beyond that, there is no client/server interaction beyond
the request and response.

thisisthe “default” call attribute. The datagram protocol service
assumes, and enforces, at-most-once call semantics none of the oth-
ers have been specified in the interface definition. Enforcement of
at-most-once semantics requires that the server positively identify
the client by doing aWAY callback, and that the server take further
pains to prevent attempts by the client to re-run such procedures.
(Such attempts are seldom deliberate on the client’s part. They usu-
ally are aside effect of network problems.)

Beyond mere semantic enforcement of formal call attributes, the datagram proto-
col service must also address special situations like:

» calsfor which the “out” arguments cannot fit into a single packet (a condition
referred to by the implementors as “large” ins or outs)

» callsthat are expected to require long processing times at the server (“slow

cals’)

» calsthat involve an extraordinary event such as afault, quit, or cancel

» calbacks, which come in two types: the generalized kind provided for use by
applications that need such afeature, and the more specialized onesimple-
mented by the conversation manager for use by servers interested in confirm-
ing client identity and monitoring client liveness.

Copyright © 1993 Open Software Foundation



Revised 4/25/95 Datagram Protocol Service, part |1

packet type and call state values. Figure 7-3 illustrates, in simplified form, the
packet processing donein theroutine do_request_common (in dgslsn.c).
(Callbacks are handled differently from “regular” callsin most respects. We dis-
cuss conversation manager callbacks later in this chapter. A discussion of general-
ized callbacks is beyond the scope of this document.) In the normal case, a
comparison of the incoming packet’s sequence number with the current call’s
sequence number (that isto say, the SCTE'sShigh seq value) providestheinitial
form of discrimination among incoming packets. Packets with sequence numbers
egual to that of the current call are deemed part of that call. Incoming packets with
higher sequence numbers are assumed to be part of anew call. Incoming packets
with lower sequence numbers are ignored.

Request processing can take one of half adozen paths. These are expressed as an
enumerated type defined in do request common. Figure 7-3 summarizes vari-
ous outcomes of packet analysis. Any incoming packet that is found to be part of
either the current call or anew one will be dispatched for additional processing.
All other outcomes (denoted by shading in the accompanying illustration) result in
the packet being dropped.

Figure 7-3: Analyzing a Received Packet
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pk for switch(call->state)
N

current
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Qgﬁ-ldempotent

orphan th?
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queue the pkt

this is for an old
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We describe the other components of the “receive path” in greater detail later onin
this chapter.

Copyright © 1993 Open Software Foundation 7-5



Datagram Protocol Service, part Il Revised 4/25/95

» ldempotent calls need to spend some time in the xmit state to return acks and/
or out arguments to the client.

* Non-idempotent calls or idempotent callswith multi-fragment “out” arguments
transition into afinal state awaiting acknowledgment from the client that all
outs have been received.

On the server side, orphaned callssimply call exit ().
Figure 7-2: Server Call Handle Sate Transitions
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Every packet header carries the call’stype (e.g., request, responsg, ...), and much
of the packet processing on the receiving side of a datagram RPC is based on
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Figure 7-1: Client Call Handle Sate Transitions
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Server Call Handle State Transitions

Figure 7-2 describes server-side state transitions and associates each transition
and/or state with an internal function. Aswith the client side, there are three funda-
mental paths through the various states (not all of which are part of every call). In
addition, any of the paths is subject to immediate transition to the idle state if the
client failsthe Who Are You (WAY) callback.

* A cal with maybe semantics needs only to be received and delivered to the
stub for potential execution.
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* Non-idempotent calls or idempotent calls with multi-packet (sometimes
referred to as “large”’) out arguments transition into afinal state awaiting a
delayed ack before reverting to idle.

For all paths through the client, transmission of a quit request effectively orphans
the call on the client side, after which the client will transition to idle upon receipt
of a quack from the server.
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Chapter 7: Datagram Protocol Service, part |1

In this chapter we discuss:

» therelationship of the datagram RPC protocol state machine to the actual
implementation, and describe the relationship between call states and packet
processing.

» common, client, and server routines that run in the network listener thread.
» forwarding

» liveness monitoring

» the Conversation Manager

Call Handle States

Aswe' ve described, the datagram RPC protocol service defines half a dozen states
inwhich acall can legally reside. Thelocal (client or sever) process's idea of the
call’'s state isrecorded in the call handle's state field. Thisfield iswritten and/or
read by many of theinternal datagram RPC protocol service functions we describe
in the next section, and is link between protocol service operations and the formal
Finite State Machine on which the protocol is based. It also isthe primary gover-
nor of call handle re-use and/or garbage collection, since only handlesin theidle
state may be re-used or freed.

Before going into the details of how the datagram RPC protocol service actually
implements the state transitions defined in the AES, we want to introduce two state
diagrams derived from sketchesin dg . h. These diagrams provide alocal view of
the workings of the state machinery as expressed in the transitions of the state
member of the call handle. Note that, while these diagrams are not identical to the
ones provided in Chapter 10 of the AES, they are functionally equivalent from the
protocol perspective.

Client Call Handle State Transitions

Figure 7-1 describes client-side state transitions and associates each transition and/
or state with an internal function. There are three fundamental paths through the
various states (not all of which are part of every cal).

* A cal with maybe semantics needs only to be transmitted and (effectively) for-
gotten about, so the client call handle transitions from init to xmit, then reverts
to theidle state awaiting re-use.

» Idempotent calls need to spend some time in the recv state and will exit only
after receiving an ack.
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Figure 6-12: Server Datagram RPC Structure Relationships
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Figure 6-11. Client Datagram RPC Data Structure Relationships
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Server Call Handle

The server-specific part of adatagram RPC call handle links a call to its binding
handle and also to the client half of any callback the server made in the course of
executing this call.

Table 6-14: rpc_dg_scall_t structure

rpc_dg _scall t {

c /* rpc dg call t, common to all dg call
handles */

fwd2 rge /* pointer to the first half of a two-
part forwarded pkt */

*scte /* pointer to the SCTE representing this
call =/

*cbk call /* pointer to the client half

(rpc_dg ccall t) of a callback */

*h /* the binding handle associated with
this call */

client needs sboot ||/* true 1ff client does not yet know
server boot time (no WAY has occurred) */

call _is_setup /* true iff we have spawned a cthread for
this call */

call executor ref |[|/* true 1ff the call has been given an
executor thread reference */

}

Data Structure Relationships

At this point, we have described all of the major data structures that are part of the
datagram RPC protocol service. These data structures are grouped functionally
into what can be described as Client Control Blocks and Server Control Blocks,
each of which include many of the same basic elements. Figure 6-11 and Figure 6-
12 are intended to provide a detailed view of the structural relationships sketched
out in Figure 6-10. Most of the functionsthat reference client or server call handles
dosoviathe rpc_dg binding client and rpc_dg binding server Struc-
tures. These structures are fairly uncomplicated, so we will dispense with the usual
illustration in the hope that Figure 6-11 and Figure 6-11 will do the trick.
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new server endpoint) need to be reflected in updates to the client call handle. Table
6-13 describes this structure.

Table 6-13: rpc_dg_ccall _t structure

rpc_dg ccall t {

c /* rpc dg call t, common to all dg
call handles */

fault rqge /* pointer to fault packet on receive
queue */

reject status /* status from any reject pkt we’ve

received */

cbk start /* true iff we’'re starting a callback
*/

response info updated||//* true iff ahint, ihint, high seqg
have been updated from values in a
response pkt */

server bound /* true iff we have a server binding
*/

cbk scall /* true if this is the client half of
a callback pair */

ccte ref /* CCTE soft reference (see Table 6-9)
*/

*h /* pointer to binding handle on which

this call was made */

ping /* a ping info structure */
quit /* a quit info structure */
cancel /* a cancel info structure */
timeout stamp /* max call execution time */

}

More data on various fields:

ping Thisreferencesan rpc_dg _ping info structure, defined in
dg.h, that records data used by the client ping logic.

quit Thisreferencesan rpc_dg gquit info structure, defined in
dg.h, that records data used in client quit processing.

cancel Thisreferencesan rpc_dg cancel info structure, defined in
dg.h, that records data used in client quit logic.
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whether the call has areservation

(has_pkt reservation==true) and, if it does, whether it actu-
aly has been allocated a packet. We discuss packet rationing on
page 7-25.

com_timeout knob
Every call includes a 32-bit timeout value known as the “timeout
knob,” since it should be thought of as conferring not an absolute
timeout value on the call, but rather arelative (e.g., “none, short,
medium, long, forever”) value. The actual values are specified in
dgxq.c. The default valueis 30 “rpc clock seconds.”

Client Cdll Handle

The client-specific part of adatagram call handle is the repository for information
associated with asingle binding handle and a single CCTE. It provides the data
needed to manage an in-progress call, and also serves as a cache for datathat is
likely to be associated with anew call that re-uses this call’s activity UUID. The
call handleisinitialized with interface id, hint, and operation number data at the
start of each new call. Changesin a call’s binding handle (e.g., new object UUID,
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3-83-8Here’'s some more information on specific structure elements.

*next

state

status

cv

xq

*sock ref

timer

high seqg

Thisvalue is protected by whatever locking mechanism is used by
the data structure of which the call handle is a member.

This field describes which of the states of the datagram protocol
Finite State Machine the call is currently assumed to bein. Possible
values are:

rpc_e dg cs_ meaning

init initialized and in use
xmit in use, sending data
recv in use, awaiting data
final in use, ack pending
idle not in use

orphan in use, waiting to exit

This thisthe current status code, the one most recently returned by
whatever piece of call transmission/execution machinery is run-
ning.

This condition variable is used in conjunction with themutex field
(in the common part of the call handle) to signal waiters that the
call handle has changed (e.g., xq or rq have new data).

The call’s transmit queue. Several values that are logically part of
the call itself are stored in the transmit queue’s prototype packet
header as an optimization and referenced through this member.
They are defined as:

call actid xq.hdr.actuid

call object xg.hdr.object

call if id xgq.hdr.if id

call if vers xg.hdr.if vers
call ahint xg.hdr.ahint

call opnum xq.hdr.opnum

call seg xq.hdr.seq

call server boot xqg.hdr.server boot

Every call must hold areference to a socket pool element. Thisis
the pointer to that element for this call.

This call’s timer routine (see page 3-8).

We track this per-call so that in the event this call is a callback and
it times out, we can still begin anew call with the appropriate
sequence number. This value can be incremented by wither receiv-
ing arequest packet with thiscall’s activity UUID, or by receiving a
response packet with ahigher high seq.

*pkt chain, has pkt reservation, in pkt chain

These values are used by the packet rationing code to determine
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Table 6-12 illustrates the common datagram RPC call handle.
Table 6-12: rpc_dg_call_t structure

rpc_dg call t {

c /* common portion (rpc_dg call rep t)
*/

*next /* pointer to next element in hash
chain */

state /* FSM state of the call */

status /* current error status of the call */

state timestamp

/* when .state was last changed */

cv /* the call’s condition variable */
xq /* the calls transmit queue */
rq /* the calls receive queue */

*sock_ref

/* pointer to socket pool elt */

actid_hash

/* uuid hash(acitivty uuid) */

key info

/* auth key info */

*auth epv

/* pointer to auth epv */

addr

/* rpc addr t of (client/server) */

timer

/* call timer */

last _rcv_timestamp

/* when we last added a pkt to .rg */

start_time

/* rpc_clock t when call started */

high seq

/* current sequence number */

*pkt chain

/* pointer to list of XQEs */

com_timeout knob

/* the big knob */

refcnt

/* count of references to this call */

stop_timer

/* true iff timer routine should die
after next execution */

is cbk

/* true iff this call was created spe-
cifically to do a callback */

has pkt reservation

/* true iff the call has a packet pool
reservation */

0

/* alignment padding*/

is_in pkt chain

/* true iff the call is waiting for an
XQE to free up */

/* alignment padding*/
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Table 6-11: rpc_call_rep_t structure

rpc_call rep t {

link

/* list of which we are a member */

m

/* mutex that protects us */

protocol id

/* protocol id, used to dispatch the
call to the appropriate protocol’s
call epv */

is_server

/* discriminator for server/client
union “u”, true iff this is a server
call handle */

u /* beginning of client/server informa-
tion (a union type) */
u.server /* server arm of the union */

cancel{ /* cancel info structure */
accepting /* true iff accepting cancels */
queuing /* true iff queuing cancels */
had pending||/* true iff call thread has a cancel
pending (queued) */
count /* number of cancels posted to call
thread */
} /* end of cancel info */
cthread /* thread-private data */
u.client /* client arm of union */
dummy /* no client-only data (yet) */

Common Datagram RPC Call Handles

The portion of acall rep that is common across datagram RPC clients and servers
isdefined in dg . h. In conjunction with several fields of the transmit queue’s pro-
totype packet header (Table 6-1), it holds the bulk of the per-call state. Most of the
fieldsin this structure are protected by the call handle’s mutex. We'll describe
exceptions to this rule when we discuss individual members.
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Figure 6-10: Call Handle Structures
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Common Call Handle Structure

The common call handle structureis defined in com. h. Weillustrate it in Table 6-

12. Note that in com.h, the client/server union u isdefined in-ling, asisthe

u.server.cancel structure, which made it necessary for usto take afew stylis-
tic liberties in deriving our illustration.
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scall

fragment bearing an activity/sequence pair that the server hasn’t
previously seen, it'shigh seq member isinitialized to

((fragment->seq) -1)

which represents the value that an existing SCTE for that activity
would have had before that fragment was received. At any instant,
high seq representsthe highest sequence number associated with
any call:

» executed by the server, or

» accepted for potential execution on the basis that its sequence
number is greater than high seq (acceptance resetshigh seqgto
the new value), or

» that acknowledges a WAY callback.

No call may be executed unless the server’s and client’s idea of
high seq have been synchronized viaa WAY callback. Once this
has happened, high seq is way validated iSSettrue.

This pointer to the scall structure (Table 6-14, page 6-35) associated
with acall that is currently using this connection. If the scall’s

call seq value matchesthis SCTE'sShigh seg value, then this
SCTE represents the connection’s current (or just-completed) call.
Otherwise, the SCTE isjust caching auth and activity information
in anticipation of later re-use.

Client and Server Call Handles

Call handles are the logical representations of RPCsin the client and server
address spaces. They hold all of acall’s state, by which we mean both the formal
states defined in the datagram RPC state tables and the informal (though volumi-
nous) collection of information required to actually execute the call.

6-28

Call handles have several parts:

* A common cal handle structure that includes information common to all RPC

protocols.

* A per-protocol call handle structure that includes information common to both
client and server call handles for a given protocol.

* Client and server call handle structures made up of the structures described
above aswell as additional information useful only to clients or servers.

Figure 6-10 describes this hierarchy. Note that the arrows do not signify pointer
relationships. Thisis a hierarchy of member types.
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SCTEs are added to the SCT by the network listener thread. The SCT and al its
Table 6-10: rpc_dg_sct_elt_t structure

rpc_dg_sct_elt t {

*next /* pointer to next elt in hash
chain */

actid /* activity UUID */

ahint /* activity hint (from pkt
header), used as the index of
this SCTE */

high seq /* highest sequence number yet

seen for this actid */

high seqg is way validated

/* true if high seqg above has
survived WAY validation */

refcnt /* reference count, always >= 1,
since the SCT itself holds a
reference */

key info /* auth key information */

*auth epv

/* pointer to auth epv */

scall /* pointer to server call handle
for this call */

timestamp /* last time this SCTE was used
by a call */

client /* pointer to client call handle

*/

elements are protected by the RPC global mutex. Table 6-10 illustrates an SCTE.
Additional useful information on SCTE fields:

high seq, high seq is way validated
Servers attempt to maintain sequence number information that
accurately reflects the information held by the client (whose idea of
acall’s sequence number is always correct), since they need this
information to maintain the integrity of non-idempotent call seman-
tics. Since thisinformation isonly approximate (the server does not
aways see every call the client makes, nor isthe client required to
increase the sequence number by 1 on successive reuses of an activ-
ity UUID), we assume that the server’sideaof call sequenceisonly
approximate until it has executed aWho Are You (WAY)) callback
to the client to validate/correct it. See page 7-20 for more informa-
tion on WAY callbacks and the conversation manager.

When an SCTE is created, in response to the arrival of a request
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CCTEs are re-usable and also garbage-collectable. Actual referencesto aCCTE
are made through a “soft” pointer that includesagc_count field (Table 6-9).

Table 6-9: rpc_dg_cct_elt_ref t structure

rpc_dg cct _elt ref t {

*ccte /* pointer to CCTE, valid iff
gc_count (below) == CCT->gc_count */
gc_count /* number of times we think the table con-
taining this entry has been GC’d */

}

The CCTE reference is considered valid if the soft pointer’s gc_ count matches
that of the cct _t on which the element resides.

Each CCTE hasarefcnt field that isincremented by every object that believesit
isholding areference to the element. Thisincludes, at aminimum, areference held
by the CCT itself, aswell as the reference to the CCTE held by the call. When a
client wantsto make acall, it first looksfor a CCTE with an auth_info field that
matchesthe client’'s auth_info and arefcnt==0. If it finds one, it increments
the reference count (declaring the CCTE in use), then increments the sequence
number and makes the call using the CCTE’s activity UUID. If the client cannot
find amatching CCTE, it creates one, generating a new activity UUID and setting
theauth info field. CCTEs are chained onto the tail of the CCT, which means
that clients, in their search for a CCTE to use, examine the oldest entries first,
which improves their chances of finding afree CCTE.

Server Connection Table and Table Elements

The Server Connection Table (SCT) is a hash table of Server Connection Table
Element (SCTE) structures that provides the basis for demultiplexing received
packets based on activity/sequence data. It also maintains a cache of call state (e.g.
auth_info) for re-use by calls with the same activity UUID. Servers keep this
information in a single table (as opposed to clients, who store analogous informa-
tion in the CCT and the CCALLT) to optimize their frequent dealings with newly-
arrived requests from previously unheard-of clients. When this happens, the server
only has to manage lookups/inserts on a single table. (Clients, we assume, always
know the source of any request packets with which they have to deal.)
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Client and Server Connection Tables

These tables provide the state needed to maintain a*“ connection” over a connec-
tionless protocol.

Client Connection Table and Table Elements

The Client Connection Table (CCT) isahash table of Client Connection Table Ele-
ments (CCTES) that provide a client with information on connection to remote
servers. Each CCTE is keyed by a call’s authentication information. Since adis-
cussion of authenticated RPC is beyond the scope of this document, we will
assume that thisis opaque data that is “aways correct.” The base CCTE is defined
in dg.h and illustrated here in Table 6-7.

Table 6-7: rpc_dg_cct_elt t structure

rpc_dg cct elt t {

*next /* pointer to next element in hash chain */
auth info /* pointer to auth info for this call */
key info /* auth key */

*auth epv /* pointer to auth epv */

actid /* activity ID */

actid hash /* uuid hash(actid) */

seq /* sequence number to use in next call */
timestamp /* last time this CCTE was used in a call */
refcnt /* number of references to this CCTE */

}

The CCT itself is simplya separately-chained hash table referenced through the
structure illustrated in Table 6-8.

Table 6-8: rpc_dg_cct_t structure

rpc dg cct t {

gc_count /* number of times this table has been gar-
bage-collected */
t /* a two-element structure with pointers to
the first and last CCTEs:
struct {

rpc_dg cct elt p t first;
rpc_dg cct _elt p t last;
}t

*/
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mine how large areceive window to advertise. Systemsthat are
rationing packets are never allowed to queue more than one packet
at atime, and so set their window size to 1.

Receive queue elements are subject to whatever locking isin effect on the queues
on which they reside. Beyond that, they have no locking requirements.

Receive queues (Table 6-6) organize queue elements so that they can be efficiently
delivered, in order, to the stubs.

Table 6-6: rpc_dg_recvq_t structure

rpc_dg recvqg t {

head

/* pointer to first queue element */

last_ inorder

/* pointer to highest-numbered in-order
queue element */

next fragnum

/* next in-order fragment we want to see

*/

high serial num

/* highest serial number seen so far */

window size

/* receive window size (pkts) */

wake thread gsize

/* number of elements to enqueue before
waking up the executor thread */

queue_len

/* number of elements in the queue */

inorder len

/* total number of contiguous (in-order)

element in the queue */

recving frags

/* true iff we are still enqueueing frag-
ments */

all pkts_received

/* true iff we’ve received all data pkts
for this call */

is way validated

/* true if this connection has survived
who-are-you callback validation */

Elements are dequeued from the head of the queue. Element ordering on the queue
is based on fragment number (the lowest-numbered packet isfirst in the queue).
Other useful per-field information includes:

last inorder

If thisfield isNULL, then thereis either a gap at the head of the
gueue or the queue is empty.

next fragnum, high fragnum, high serial num
Queue organization functions use these values to determine the
order in which to insert aanew queue elements.

Copyright © 1993 Open Software Foundation




Revised 4/25/95 Datagram Protocol Service, part |

max_blast size.

push set true when all queue elements—even those that are partially
filled—should be transmitted. In DCE 1.0.2, it is always true.

Receive Queues and Queue Elements

Receive queue elements (Table 6-5) are essentially received packets embellished
with some additional information.

Table 6-5: rpc_dg_recvq_elt_t structure

rpc_dg recvg elt t {

*next /* pointer to next queue element */

hdrp /* pointer to “usable” pkt hdr */

hdr /* properly-aligned *hdrp */

sock /* where to send response (rpc_socket t) */
from len /* length of .from field */

pkt len /* length of raw packet as received */

from /* rpc _addr t of sender */

was rationing /* sender was rationing packets when this

one was allocated */

low_on pkts /* sender was low on packets when this one
was allocated */

pkt /* offset to beginning of pkt (gets us
through any alignment padding) */

pkt real /* pointer to actual start of received
packet */

}

Here's some additional information on some of the receive queue element’sfields.

hdrp, hdr hdrp isapointer to the header asit was received. hdr isa pointer
to adummy structure laid out by the local compiler, into which val-
uesfrom hdrp are plugged. When possible (i.e., when the local and
remote layouts are the same), hdrp pointsdirectly to pkt - >hdr,
saving a data copy.

pkt, pkt real
pkt_real pointsto abuffer that has been allocated to hold the
packet as it arrived from the sender. pkt pointsto a copy of
pkt real that hasbeenaignedona (0 mod 8) boundary, which
the stubs require. All processing of received packets uses pkt, not
pkt_real.

was_rationing, low on pkts
These two values are used by the packet rationing code to deter-
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site element pointers, all the information needed to initialize packet headers and to
manage flow control. Table 6-4 describes the fields of this structure. Additional
information on certain fields follows.

rexmitqg pointer to the head of the retransmit queue
part_xge  pointer to apartially-filled queue element

awaiting ack, awaiting ack timestamp
These values are used to help determine whether areceiver has
died. awaiting ack iSSet true by any routine that transmits a
packet expected to induce an acknowledgment. acknowledgment
can consist of aworking, fack, ack, or response packet.

timestamp rpc_clock t whenthe most recent transmission was made

rexmit_ timeout
Interval to wait before retransmitting, Retransmission istypically

deferred until timestamp+rexmit timeout has been reached.

base flags, base flags2
Thefirst of these valuesislogically ORed with a queue element’s
flags value to produce the flags field in the packet header. The sec-
ond is simply applied to the header as f1ags2.

next fragnum
The next fragment number to use. Initialized to zero for the first
packet of acall. Incremented for each subsequent packet in the call.

next serial num
The next serial number to use. Initialized to zero for the first packet
in the queue. Incremented for each packet transmitted or retransmit-
ted.

last fack serial
Serial number of the packet that induced the most recently received
fack. Used when setting blast size.

max_ tsdu, max path tpdu, max pkt size
We want to send the largest packet we can that will not be subject to
fragmentation not under our control (e.g., IP fragmentation on the
network), so we set max_pkt_size tothesmaller of max_tsdu
and max_path tpdu.

max _blast size, xg timer, xg_timer throttle, high cwindow
Thesefour fields are used in determining how many packetsto send
inablast (blast_size). When aconnection isreliable (no lost
packets) and round-trip times are short, our flow control logic may
not allow the congestion window to grow asfast at it could. Under
such conditions, max_blast size may be periodically adjusted
at intervals controlled by thexg timer, whichis set to the number
of “good” facks that must be received before upping
max_blast size. Theinitia valueof xg timer is8. To prevent
oscillation around agiven max_blast size,xqg timeriS reset
t0 (xq_timer throttle * xqg timer) after each increase of
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The transmit queue itself is alarge structure that includes, in addition to the requi-
Table 6-4: rpc_dg_xmitg_elt_t structure

rpc_dg xmitg t {

head

/* pointer to first pkt on queue */

first unsent

/* pointer to first unsent pkt on
queue */

tail /* pointer to last pkt on queue */

rexmitg /* pointer to first pkt on retrans-
mission queue */

part xge /* pointer to partially-filled pkt */

hdr /* prototype packet header */

awaiting ack_timestamp

/* when awaiting ack field was set */

timestamp

/* most recent (re)xmit time */

rexmit timeout

/* how long until next rexmit */

base flags

/* flags field for all pkt hdrs */

base flags2

/* flags2 field for all pkt hdrs */

next fragnum

/* fragnum for next pkt hdr */

next serial num

/* serial num for next pkt hdr */

last fack_ serial

/* serial number of pkt that induced
most recently-received fack */

window size

/* receive window size (pkts) */

cwindow size

/* congestion window size (pkts) */

max tsdu

/* largest pkt we can send through
the local transport API */

max path tpdu

/* largest pkt that won’'t get frag-
mented on the wire */

max pkt size

/* min of max*t*du above */

blast size

/* current blast size */

max _blast size

/* maximum allowable blast size */

xq_timer

/* schedules adjustments to blast
size */

xqg timer throttle

/* how much to delay next blast */

high cwindow

/* largest congestion window seen */

fregs out

/* number of outstanding fack
requests */

push

/* false == keep at least one pkt

awaiting ack

/* true if we’re waiting for an ack

*/
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ments apply to the queue on which they reside. If they do not yet reside on aqueue,
they need not be locked.

Table 6-3: rpc_dg_xmitg_elt_t

rpc_dg xmitg elt t {

*next /* pointer to next elt */

*next rexmit /* pointer to next elt on rexmit queue */

flags /* pkt hdr flags */

fragnum /* pkt hdr fragnum */

serial num /* pkt hdr serial number */

body len /* sizeof (body) */

body /* pointer to body of this element */

in cwindow /* true iff body is part of the current
congestion window */

}
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of interest will not be freed even though the interested party may not have it
locked.

Reference countsfor, say, adummy t structure are typically used as shown in Fig-
ure 6-9.

Figure 6-9: Using Reference Counts

MUTEX LOCK (dummy)

fiddle with (dummy->member)
dummy->refcnt++ /* grab a reference */
MUTEX UNLOCK (dummy)

/********************************

** do some long-running chore **
********************************/
MUTEX LOCK (dummy)

fiddle with (dummy->member)
dummy->refcnt-- /* free our reference */
/* now call a “release” function, which
** does something like this:

*/

if (dummy->refcnt == 0); {
free (dummy) ;

else

MUTEX UNLOCK (dummy) ;

}

The mechanism is simple, consisting of an integer member that all functions with
an interest in the structure’s contents agree to increment when examining or alter-
ing the structure and decrement when they’re done. Structureswith arefcnt==0
are assumed to have no readers and may be freed. (The implementation provides a
release function that should be called to examine a structure’s refent field and do
theright (UNLOCK/ free) thing.) Rules for using reference counts can be summa-
rized as:

* Functions that examine reference-counted data structures should return with
the entry locked and the reference count incremented.

* Functions that need to grab or release a reference must lock the referenced
structure first.

* Onceafunction has released its reference to a structure, it cannot reference
structure elements again without first re-acquiring a reference.

Transmit and Receive Queues

Transmit and receive queues are queues of elements that are essentially pointers to
headerless packets. Each queue element includes flags, an activity UUID, and
sequence, serial, and fragment numbers from which call transmit functions con-
struct a packet header that is prepended to the packet prior to transmission.

Transmit Queues and Queue Elements

Transmit queue elements and transmit queues are defined in dg . h. Individual
gueue elements, asillustrated in Table 6-3, are subject to whatever locking require-
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Taken together, these values ensure that every datagram RPC packet is unique, and
let servers start up call execution with minimal overhead (no need to perform a
WAY callback) when activity UUIDs are re-used.

Figure 6-8 should help sort out the uses of these four values.
Figure 6-8: Activity ID, Fragment, Sequence, and Serial Number

actuid= 0001 [actuid= 0001 [actuid= 0001 |actuid= 0001
fragnum= 0000 |fragnum= 0001 |fragnum= 0002 [fragnum= 0003
seq= 0000 (seq= 0000 |[seq= 0000 |seq= 0000
serial= 0000 |serial= 0001 (serial= 0002 (serial= 0003

a call whose arguments fit into four packets

actuuid= 0001 [actuuid= 0001 [actuuid= 0001 |actuuid= 0001
fragnum= 0000 |fragnum= 0001 |fragnum= 0002 |fragnum= 0003
seq= 0001 (seq= 0001 |seq= 0001 |seqg= 0001
serial= 0004 |serial= 0005 |serial= 0006 |serial= 0007

a reused activity UUID (new call, same principal)

actuuid= 0002 |actuuid= 0002 |actuuid= 0002 |actuuid= 0002
fragnum= 0000 |fragnum= 0001 |fragnum= 0002 [fragnum= 0003
seq= 0000 (seq= 0000 |seq= 0000 |seq= 0000
serial= 0008 |serial= 0009 (serial= 0010 |serial= 0011

a new activity (new call, new principal) N

«, |actuuid= 0002
fragnum= 0003
seq= 0000
retransmitted packet |Serial= 0012

Major Datagram Protocol Service Data Structures

There are anumber of important data structures that more or less define calls and
logical “connections’ between clients and servers. Since the structures themselves
are closely interrelated, we will describe them all in this section, even though
many of the functions that reference these structures’ contents will be detailed
later.

Reference Counts

6-18

Many of the datagram RPC service's data structures include a field named
refcnt, which isthe structure’s reference count. Reference counts provide an
auxiliary locking mechanism used in conjunction with mutex locking to protect
heap-allocated critical data needsto be locked for “long” intervals — long enough
to make it inefficient to simply mutex lock the entire structure for the entire time—
or that needs to be temporarily unlocked by alock-holder that needsto acquire a
higher-level lock. Reference counts provide away of guaranteeing that a structure
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» Upon receipt of afack, the sender checks the serial number and selective ack
information to find out how many packets the fack is actually acknowledging

» The sender then computes a new blast size of twice the number of packets
being facked.

* The sender adjusts the new blast size if necessary to fit into the receive win-
dow.

» If the total number of packets required for the blast are available for transmis-
sion (i.e., are on the transmit and/or retransmit queues), the sender transmits
them. If not, the sender reduces the blast size to the number of packets avail-
able.

» If there are more packets to send, the process begins again.

Thelocal idea of window sizeisbased on several constantsdefined in dg . h, aong
with a computation using the value returned from the host operating system in
response to arequest for a specific amount of buffering. The constants include a
maximum window size and a “socket load” factor that represents the number of
simultaneous calls we expect a socket to handle and how many fragments (pack-
ets) each call will require. We make the further assumption that we can establish
send buffering adequate to the needs of areceiver with the same amount of receive
buffering we believe the local environment provides(i.e., send bufferingisinitialy
consistent with our advertised receive window).

Activity | Ds, Fragment. Sequence, and Serial Numbers

Every datagram RPC packet header includes, as we' ve described, fragment,
sequence, and serial numbers, as well as an activity UUID. These four values pro-
vide the means of associating a packet with a call, and of detecting duplicate
receives.

» Activity UUIDs and sequence numbers are the key to associating calls with
logical connections. A given pairing of activity UUID and sequence number is
guaranteed unique for all packets associated with a given RPC. Activity
UUIDs can be reused, which is why we need sequence numbers to distinguish
among instances of activity UUID reuse. Each re-use of an activity UUID
increments the sequence number. Calls made with a given activity UUID
always have the same authentication information, and servers cache per-activ-
ity state for reuse in executing subsequent calls with the same activity UUID.

* Fragment numbers increase monotonically per packet for calls whose argu-
ments cannot all fit in a single packet.

» Seriad numbers are unigque per packet, and are part of the datagram protocol
service's retransmission and duplicate-detection machinery. When a packet is
transmitted, it gets the “next serial number” associated with its transmit queue.
If it needs to be retransmitted, it is put on the transmit queue’s retransmission
gueue and given anew serial number.
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The Packet Pipeline

6-16

The datagram RPC code has the notion of a packet pipeline that is constrained by
the receiver’s advertised window size as well as by some amount of network buff-
ering that can be measured in packet round-trip time (RTT), which we define as the
interval between the transmission of a packet and acknowledgment of itsreceipt. It
isquite possible for RTTs to be insignificant in comparison wit